Fix a global buffer overflow in GCPDF_CIDFont::_CharCodeFromUnicode
[pdfium.git] / core / src / fxcodec / libjpeg / fpdfapi_jfdctint.c
index 88810a7..488505b 100644 (file)
-#if !defined(_FX_JPEG_TURBO_)\r
-/*\r
- * jfdctint.c\r
- *\r
- * Copyright (C) 1991-1996, Thomas G. Lane.\r
- * This file is part of the Independent JPEG Group's software.\r
- * For conditions of distribution and use, see the accompanying README file.\r
- *\r
- * This file contains a slow-but-accurate integer implementation of the\r
- * forward DCT (Discrete Cosine Transform).\r
- *\r
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT\r
- * on each column.  Direct algorithms are also available, but they are\r
- * much more complex and seem not to be any faster when reduced to code.\r
- *\r
- * This implementation is based on an algorithm described in\r
- *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT\r
- *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,\r
- *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.\r
- * The primary algorithm described there uses 11 multiplies and 29 adds.\r
- * We use their alternate method with 12 multiplies and 32 adds.\r
- * The advantage of this method is that no data path contains more than one\r
- * multiplication; this allows a very simple and accurate implementation in\r
- * scaled fixed-point arithmetic, with a minimal number of shifts.\r
- */\r
-\r
-#define JPEG_INTERNALS\r
-#include "jinclude.h"\r
-#include "jpeglib.h"\r
-#include "jdct.h"              /* Private declarations for DCT subsystem */\r
-\r
-#ifdef DCT_ISLOW_SUPPORTED\r
-\r
-\r
-/*\r
- * This module is specialized to the case DCTSIZE = 8.\r
- */\r
-\r
-#if DCTSIZE != 8\r
-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */\r
-#endif\r
-\r
-\r
-/*\r
- * The poop on this scaling stuff is as follows:\r
- *\r
- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)\r
- * larger than the true DCT outputs.  The final outputs are therefore\r
- * a factor of N larger than desired; since N=8 this can be cured by\r
- * a simple right shift at the end of the algorithm.  The advantage of\r
- * this arrangement is that we save two multiplications per 1-D DCT,\r
- * because the y0 and y4 outputs need not be divided by sqrt(N).\r
- * In the IJG code, this factor of 8 is removed by the quantization step\r
- * (in jcdctmgr.c), NOT in this module.\r
- *\r
- * We have to do addition and subtraction of the integer inputs, which\r
- * is no problem, and multiplication by fractional constants, which is\r
- * a problem to do in integer arithmetic.  We multiply all the constants\r
- * by CONST_SCALE and convert them to integer constants (thus retaining\r
- * CONST_BITS bits of precision in the constants).  After doing a\r
- * multiplication we have to divide the product by CONST_SCALE, with proper\r
- * rounding, to produce the correct output.  This division can be done\r
- * cheaply as a right shift of CONST_BITS bits.  We postpone shifting\r
- * as long as possible so that partial sums can be added together with\r
- * full fractional precision.\r
- *\r
- * The outputs of the first pass are scaled up by PASS1_BITS bits so that\r
- * they are represented to better-than-integral precision.  These outputs\r
- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word\r
- * with the recommended scaling.  (For 12-bit sample data, the intermediate\r
- * array is INT32 anyway.)\r
- *\r
- * To avoid overflow of the 32-bit intermediate results in pass 2, we must\r
- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis\r
- * shows that the values given below are the most effective.\r
- */\r
-\r
-#if BITS_IN_JSAMPLE == 8\r
-#define CONST_BITS  13\r
-#define PASS1_BITS  2\r
-#else\r
-#define CONST_BITS  13\r
-#define PASS1_BITS  1          /* lose a little precision to avoid overflow */\r
-#endif\r
-\r
-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus\r
- * causing a lot of useless floating-point operations at run time.\r
- * To get around this we use the following pre-calculated constants.\r
- * If you change CONST_BITS you may want to add appropriate values.\r
- * (With a reasonable C compiler, you can just rely on the FIX() macro...)\r
- */\r
-\r
-#if CONST_BITS == 13\r
-#define FIX_0_298631336  ((INT32)  2446)       /* FIX(0.298631336) */\r
-#define FIX_0_390180644  ((INT32)  3196)       /* FIX(0.390180644) */\r
-#define FIX_0_541196100  ((INT32)  4433)       /* FIX(0.541196100) */\r
-#define FIX_0_765366865  ((INT32)  6270)       /* FIX(0.765366865) */\r
-#define FIX_0_899976223  ((INT32)  7373)       /* FIX(0.899976223) */\r
-#define FIX_1_175875602  ((INT32)  9633)       /* FIX(1.175875602) */\r
-#define FIX_1_501321110  ((INT32)  12299)      /* FIX(1.501321110) */\r
-#define FIX_1_847759065  ((INT32)  15137)      /* FIX(1.847759065) */\r
-#define FIX_1_961570560  ((INT32)  16069)      /* FIX(1.961570560) */\r
-#define FIX_2_053119869  ((INT32)  16819)      /* FIX(2.053119869) */\r
-#define FIX_2_562915447  ((INT32)  20995)      /* FIX(2.562915447) */\r
-#define FIX_3_072711026  ((INT32)  25172)      /* FIX(3.072711026) */\r
-#else\r
-#define FIX_0_298631336  FIX(0.298631336)\r
-#define FIX_0_390180644  FIX(0.390180644)\r
-#define FIX_0_541196100  FIX(0.541196100)\r
-#define FIX_0_765366865  FIX(0.765366865)\r
-#define FIX_0_899976223  FIX(0.899976223)\r
-#define FIX_1_175875602  FIX(1.175875602)\r
-#define FIX_1_501321110  FIX(1.501321110)\r
-#define FIX_1_847759065  FIX(1.847759065)\r
-#define FIX_1_961570560  FIX(1.961570560)\r
-#define FIX_2_053119869  FIX(2.053119869)\r
-#define FIX_2_562915447  FIX(2.562915447)\r
-#define FIX_3_072711026  FIX(3.072711026)\r
-#endif\r
-\r
-\r
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.\r
- * For 8-bit samples with the recommended scaling, all the variable\r
- * and constant values involved are no more than 16 bits wide, so a\r
- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.\r
- * For 12-bit samples, a full 32-bit multiplication will be needed.\r
- */\r
-\r
-#if BITS_IN_JSAMPLE == 8\r
-#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)\r
-#else\r
-#define MULTIPLY(var,const)  ((var) * (const))\r
-#endif\r
-\r
-\r
-/*\r
- * Perform the forward DCT on one block of samples.\r
- */\r
-\r
-GLOBAL(void)\r
-jpeg_fdct_islow (DCTELEM * data)\r
-{\r
-  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;\r
-  INT32 tmp10, tmp11, tmp12, tmp13;\r
-  INT32 z1, z2, z3, z4, z5;\r
-  DCTELEM *dataptr;\r
-  int ctr;\r
-  SHIFT_TEMPS\r
-\r
-  /* Pass 1: process rows. */\r
-  /* Note results are scaled up by sqrt(8) compared to a true DCT; */\r
-  /* furthermore, we scale the results by 2**PASS1_BITS. */\r
-\r
-  dataptr = data;\r
-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {\r
-    tmp0 = dataptr[0] + dataptr[7];\r
-    tmp7 = dataptr[0] - dataptr[7];\r
-    tmp1 = dataptr[1] + dataptr[6];\r
-    tmp6 = dataptr[1] - dataptr[6];\r
-    tmp2 = dataptr[2] + dataptr[5];\r
-    tmp5 = dataptr[2] - dataptr[5];\r
-    tmp3 = dataptr[3] + dataptr[4];\r
-    tmp4 = dataptr[3] - dataptr[4];\r
-    \r
-    /* Even part per LL&M figure 1 --- note that published figure is faulty;\r
-     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".\r
-     */\r
-    \r
-    tmp10 = tmp0 + tmp3;\r
-    tmp13 = tmp0 - tmp3;\r
-    tmp11 = tmp1 + tmp2;\r
-    tmp12 = tmp1 - tmp2;\r
-    \r
-    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);\r
-    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);\r
-    \r
-    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);\r
-    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),\r
-                                  CONST_BITS-PASS1_BITS);\r
-    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),\r
-                                  CONST_BITS-PASS1_BITS);\r
-    \r
-    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).\r
-     * cK represents cos(K*pi/16).\r
-     * i0..i3 in the paper are tmp4..tmp7 here.\r
-     */\r
-    \r
-    z1 = tmp4 + tmp7;\r
-    z2 = tmp5 + tmp6;\r
-    z3 = tmp4 + tmp6;\r
-    z4 = tmp5 + tmp7;\r
-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */\r
-    \r
-    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */\r
-    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */\r
-    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */\r
-    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */\r
-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */\r
-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */\r
-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */\r
-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */\r
-    \r
-    z3 += z5;\r
-    z4 += z5;\r
-    \r
-    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);\r
-    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);\r
-    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);\r
-    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);\r
-    \r
-    dataptr += DCTSIZE;                /* advance pointer to next row */\r
-  }\r
-\r
-  /* Pass 2: process columns.\r
-   * We remove the PASS1_BITS scaling, but leave the results scaled up\r
-   * by an overall factor of 8.\r
-   */\r
-\r
-  dataptr = data;\r
-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {\r
-    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];\r
-    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];\r
-    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];\r
-    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];\r
-    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];\r
-    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];\r
-    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];\r
-    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];\r
-    \r
-    /* Even part per LL&M figure 1 --- note that published figure is faulty;\r
-     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".\r
-     */\r
-    \r
-    tmp10 = tmp0 + tmp3;\r
-    tmp13 = tmp0 - tmp3;\r
-    tmp11 = tmp1 + tmp2;\r
-    tmp12 = tmp1 - tmp2;\r
-    \r
-    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);\r
-    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);\r
-    \r
-    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);\r
-    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),\r
-                                          CONST_BITS+PASS1_BITS);\r
-    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),\r
-                                          CONST_BITS+PASS1_BITS);\r
-    \r
-    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).\r
-     * cK represents cos(K*pi/16).\r
-     * i0..i3 in the paper are tmp4..tmp7 here.\r
-     */\r
-    \r
-    z1 = tmp4 + tmp7;\r
-    z2 = tmp5 + tmp6;\r
-    z3 = tmp4 + tmp6;\r
-    z4 = tmp5 + tmp7;\r
-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */\r
-    \r
-    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */\r
-    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */\r
-    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */\r
-    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */\r
-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */\r
-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */\r
-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */\r
-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */\r
-    \r
-    z3 += z5;\r
-    z4 += z5;\r
-    \r
-    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,\r
-                                          CONST_BITS+PASS1_BITS);\r
-    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,\r
-                                          CONST_BITS+PASS1_BITS);\r
-    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,\r
-                                          CONST_BITS+PASS1_BITS);\r
-    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,\r
-                                          CONST_BITS+PASS1_BITS);\r
-    \r
-    dataptr++;                 /* advance pointer to next column */\r
-  }\r
-}\r
-\r
-#endif /* DCT_ISLOW_SUPPORTED */\r
-\r
-#endif //_FX_JPEG_TURBO_\r
+#if !defined(_FX_JPEG_TURBO_)
+/*
+ * jfdctint.c
+ *
+ * Copyright (C) 1991-1996, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a slow-but-accurate integer implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column.  Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on an algorithm described in
+ *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+ *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+ *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+ * The primary algorithm described there uses 11 multiplies and 29 adds.
+ * We use their alternate method with 12 multiplies and 32 adds.
+ * The advantage of this method is that no data path contains more than one
+ * multiplication; this allows a very simple and accurate implementation in
+ * scaled fixed-point arithmetic, with a minimal number of shifts.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h"              /* Private declarations for DCT subsystem */
+
+#ifdef DCT_ISLOW_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * The poop on this scaling stuff is as follows:
+ *
+ * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
+ * larger than the true DCT outputs.  The final outputs are therefore
+ * a factor of N larger than desired; since N=8 this can be cured by
+ * a simple right shift at the end of the algorithm.  The advantage of
+ * this arrangement is that we save two multiplications per 1-D DCT,
+ * because the y0 and y4 outputs need not be divided by sqrt(N).
+ * In the IJG code, this factor of 8 is removed by the quantization step
+ * (in jcdctmgr.c), NOT in this module.
+ *
+ * We have to do addition and subtraction of the integer inputs, which
+ * is no problem, and multiplication by fractional constants, which is
+ * a problem to do in integer arithmetic.  We multiply all the constants
+ * by CONST_SCALE and convert them to integer constants (thus retaining
+ * CONST_BITS bits of precision in the constants).  After doing a
+ * multiplication we have to divide the product by CONST_SCALE, with proper
+ * rounding, to produce the correct output.  This division can be done
+ * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
+ * as long as possible so that partial sums can be added together with
+ * full fractional precision.
+ *
+ * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+ * they are represented to better-than-integral precision.  These outputs
+ * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+ * with the recommended scaling.  (For 12-bit sample data, the intermediate
+ * array is INT32 anyway.)
+ *
+ * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+ * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
+ * shows that the values given below are the most effective.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define CONST_BITS  13
+#define PASS1_BITS  2
+#else
+#define CONST_BITS  13
+#define PASS1_BITS  1          /* lose a little precision to avoid overflow */
+#endif
+
+/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+ * causing a lot of useless floating-point operations at run time.
+ * To get around this we use the following pre-calculated constants.
+ * If you change CONST_BITS you may want to add appropriate values.
+ * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+ */
+
+#if CONST_BITS == 13
+#define FIX_0_298631336  ((INT32)  2446)       /* FIX(0.298631336) */
+#define FIX_0_390180644  ((INT32)  3196)       /* FIX(0.390180644) */
+#define FIX_0_541196100  ((INT32)  4433)       /* FIX(0.541196100) */
+#define FIX_0_765366865  ((INT32)  6270)       /* FIX(0.765366865) */
+#define FIX_0_899976223  ((INT32)  7373)       /* FIX(0.899976223) */
+#define FIX_1_175875602  ((INT32)  9633)       /* FIX(1.175875602) */
+#define FIX_1_501321110  ((INT32)  12299)      /* FIX(1.501321110) */
+#define FIX_1_847759065  ((INT32)  15137)      /* FIX(1.847759065) */
+#define FIX_1_961570560  ((INT32)  16069)      /* FIX(1.961570560) */
+#define FIX_2_053119869  ((INT32)  16819)      /* FIX(2.053119869) */
+#define FIX_2_562915447  ((INT32)  20995)      /* FIX(2.562915447) */
+#define FIX_3_072711026  ((INT32)  25172)      /* FIX(3.072711026) */
+#else
+#define FIX_0_298631336  FIX(0.298631336)
+#define FIX_0_390180644  FIX(0.390180644)
+#define FIX_0_541196100  FIX(0.541196100)
+#define FIX_0_765366865  FIX(0.765366865)
+#define FIX_0_899976223  FIX(0.899976223)
+#define FIX_1_175875602  FIX(1.175875602)
+#define FIX_1_501321110  FIX(1.501321110)
+#define FIX_1_847759065  FIX(1.847759065)
+#define FIX_1_961570560  FIX(1.961570560)
+#define FIX_2_053119869  FIX(2.053119869)
+#define FIX_2_562915447  FIX(2.562915447)
+#define FIX_3_072711026  FIX(3.072711026)
+#endif
+
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * For 8-bit samples with the recommended scaling, all the variable
+ * and constant values involved are no more than 16 bits wide, so a
+ * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+ * For 12-bit samples, a full 32-bit multiplication will be needed.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+#else
+#define MULTIPLY(var,const)  ((var) * (const))
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL(void)
+jpeg_fdct_islow (DCTELEM * data)
+{
+  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+  INT32 tmp10, tmp11, tmp12, tmp13;
+  INT32 z1, z2, z3, z4, z5;
+  DCTELEM *dataptr;
+  int ctr;
+  SHIFT_TEMPS
+
+  /* Pass 1: process rows. */
+  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+  /* furthermore, we scale the results by 2**PASS1_BITS. */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[0] + dataptr[7];
+    tmp7 = dataptr[0] - dataptr[7];
+    tmp1 = dataptr[1] + dataptr[6];
+    tmp6 = dataptr[1] - dataptr[6];
+    tmp2 = dataptr[2] + dataptr[5];
+    tmp5 = dataptr[2] - dataptr[5];
+    tmp3 = dataptr[3] + dataptr[4];
+    tmp4 = dataptr[3] - dataptr[4];
+    
+    /* Even part per LL&M figure 1 --- note that published figure is faulty;
+     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+     */
+    
+    tmp10 = tmp0 + tmp3;
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
+    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+    
+    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+                                  CONST_BITS-PASS1_BITS);
+    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+                                  CONST_BITS-PASS1_BITS);
+    
+    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+     * cK represents cos(K*pi/16).
+     * i0..i3 in the paper are tmp4..tmp7 here.
+     */
+    
+    z1 = tmp4 + tmp7;
+    z2 = tmp5 + tmp6;
+    z3 = tmp4 + tmp6;
+    z4 = tmp5 + tmp7;
+    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+    
+    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+    
+    z3 += z5;
+    z4 += z5;
+    
+    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
+    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
+    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
+    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
+    
+    dataptr += DCTSIZE;                /* advance pointer to next row */
+  }
+
+  /* Pass 2: process columns.
+   * We remove the PASS1_BITS scaling, but leave the results scaled up
+   * by an overall factor of 8.
+   */
+
+  dataptr = data;
+  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+    
+    /* Even part per LL&M figure 1 --- note that published figure is faulty;
+     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+     */
+    
+    tmp10 = tmp0 + tmp3;
+    tmp13 = tmp0 - tmp3;
+    tmp11 = tmp1 + tmp2;
+    tmp12 = tmp1 - tmp2;
+    
+    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
+    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
+    
+    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+                                          CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+                                          CONST_BITS+PASS1_BITS);
+    
+    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+     * cK represents cos(K*pi/16).
+     * i0..i3 in the paper are tmp4..tmp7 here.
+     */
+    
+    z1 = tmp4 + tmp7;
+    z2 = tmp5 + tmp6;
+    z3 = tmp4 + tmp6;
+    z4 = tmp5 + tmp7;
+    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+    
+    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+    
+    z3 += z5;
+    z4 += z5;
+    
+    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
+                                          CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
+                                          CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
+                                          CONST_BITS+PASS1_BITS);
+    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
+                                          CONST_BITS+PASS1_BITS);
+    
+    dataptr++;                 /* advance pointer to next column */
+  }
+}
+
+#endif /* DCT_ISLOW_SUPPORTED */
+
+#endif //_FX_JPEG_TURBO_