Convert a bunch of raw pointers in fsdk_mgr to unique_ptrs.
[pdfium.git] / third_party / libjpeg / fpdfapi_jdhuff.c
1 #if !defined(_FX_JPEG_TURBO_)
2 /*
3  * jdhuff.c
4  *
5  * Copyright (C) 1991-1997, Thomas G. Lane.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains Huffman entropy decoding routines.
10  *
11  * Much of the complexity here has to do with supporting input suspension.
12  * If the data source module demands suspension, we want to be able to back
13  * up to the start of the current MCU.  To do this, we copy state variables
14  * into local working storage, and update them back to the permanent
15  * storage only upon successful completion of an MCU.
16  */
17
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
22
23 #ifdef _FX_MANAGED_CODE_
24 #define savable_state   savable_state_d
25 #endif
26
27 /*
28  * Expanded entropy decoder object for Huffman decoding.
29  *
30  * The savable_state subrecord contains fields that change within an MCU,
31  * but must not be updated permanently until we complete the MCU.
32  */
33
34 typedef struct {
35   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
36 } savable_state;
37
38 /* This macro is to work around compilers with missing or broken
39  * structure assignment.  You'll need to fix this code if you have
40  * such a compiler and you change MAX_COMPS_IN_SCAN.
41  */
42
43 #ifndef NO_STRUCT_ASSIGN
44 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
45 #else
46 #if MAX_COMPS_IN_SCAN == 4
47 #define ASSIGN_STATE(dest,src)  \
48         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
49          (dest).last_dc_val[1] = (src).last_dc_val[1], \
50          (dest).last_dc_val[2] = (src).last_dc_val[2], \
51          (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
54
55
56 typedef struct {
57   struct jpeg_entropy_decoder pub; /* public fields */
58
59   /* These fields are loaded into local variables at start of each MCU.
60    * In case of suspension, we exit WITHOUT updating them.
61    */
62   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
63   savable_state saved;          /* Other state at start of MCU */
64
65   /* These fields are NOT loaded into local working state. */
66   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
67
68   /* Pointers to derived tables (these workspaces have image lifespan) */
69   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
71
72   /* Precalculated info set up by start_pass for use in decode_mcu: */
73
74   /* Pointers to derived tables to be used for each block within an MCU */
75   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
77   /* Whether we care about the DC and AC coefficient values for each block */
78   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
79   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
80 } huff_entropy_decoder;
81
82 typedef huff_entropy_decoder * huff_entropy_ptr;
83
84
85 /*
86  * Initialize for a Huffman-compressed scan.
87  */
88
89 METHODDEF(void)
90 start_pass_huff_decoder (j_decompress_ptr cinfo)
91 {
92   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
93   int ci, blkn, dctbl, actbl;
94   jpeg_component_info * compptr;
95
96   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
97    * This ought to be an error condition, but we make it a warning because
98    * there are some baseline files out there with all zeroes in these bytes.
99    */
100   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
101       cinfo->Ah != 0 || cinfo->Al != 0)
102     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
103
104   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
105     compptr = cinfo->cur_comp_info[ci];
106     dctbl = compptr->dc_tbl_no;
107     actbl = compptr->ac_tbl_no;
108     /* Compute derived values for Huffman tables */
109     /* We may do this more than once for a table, but it's not expensive */
110     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
111                             & entropy->dc_derived_tbls[dctbl]);
112     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
113                             & entropy->ac_derived_tbls[actbl]);
114     /* Initialize DC predictions to 0 */
115     entropy->saved.last_dc_val[ci] = 0;
116   }
117
118   /* Precalculate decoding info for each block in an MCU of this scan */
119   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
120     ci = cinfo->MCU_membership[blkn];
121     compptr = cinfo->cur_comp_info[ci];
122     /* Precalculate which table to use for each block */
123     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
124     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
125     /* Decide whether we really care about the coefficient values */
126     if (compptr->component_needed) {
127       entropy->dc_needed[blkn] = TRUE;
128       /* we don't need the ACs if producing a 1/8th-size image */
129       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
130     } else {
131       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
132     }
133   }
134
135   /* Initialize bitread state variables */
136   entropy->bitstate.bits_left = 0;
137   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
138   entropy->pub.insufficient_data = FALSE;
139
140   /* Initialize restart counter */
141   entropy->restarts_to_go = cinfo->restart_interval;
142 }
143
144
145 /*
146  * Compute the derived values for a Huffman table.
147  * This routine also performs some validation checks on the table.
148  *
149  * Note this is also used by jdphuff.c.
150  */
151
152 GLOBAL(void)
153 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
154                          d_derived_tbl ** pdtbl)
155 {
156   JHUFF_TBL *htbl;
157   d_derived_tbl *dtbl;
158   int p, i, l, _si, numsymbols;
159   int lookbits, ctr;
160   char huffsize[257];
161   unsigned int huffcode[257];
162   unsigned int code;
163
164   /* Note that huffsize[] and huffcode[] are filled in code-length order,
165    * paralleling the order of the symbols themselves in htbl->huffval[].
166    */
167
168   /* Find the input Huffman table */
169   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171   htbl =
172     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
173   if (htbl == NULL)
174     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
175
176   /* Allocate a workspace if we haven't already done so. */
177   if (*pdtbl == NULL)
178     *pdtbl = (d_derived_tbl *)
179       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
180                                   SIZEOF(d_derived_tbl));
181   dtbl = *pdtbl;
182   dtbl->pub = htbl;             /* fill in back link */
183   
184   /* Figure C.1: make table of Huffman code length for each symbol */
185
186   p = 0;
187   for (l = 1; l <= 16; l++) {
188     i = (int) htbl->bits[l];
189     if (i < 0 || p + i > 256)   /* protect against table overrun */
190       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
191     while (i--)
192       huffsize[p++] = (char) l;
193   }
194   huffsize[p] = 0;
195   numsymbols = p;
196   
197   /* Figure C.2: generate the codes themselves */
198   /* We also validate that the counts represent a legal Huffman code tree. */
199   
200   code = 0;
201   _si = huffsize[0];
202   p = 0;
203   while (huffsize[p]) {
204     while (((int) huffsize[p]) == _si) {
205       huffcode[p++] = code;
206       code++;
207     }
208     /* code is now 1 more than the last code used for codelength si; but
209      * it must still fit in si bits, since no code is allowed to be all ones.
210      */
211     if (((INT32) code) >= (((INT32) 1) << _si))
212       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
213     code <<= 1;
214     _si++;
215   }
216
217   /* Figure F.15: generate decoding tables for bit-sequential decoding */
218
219   p = 0;
220   for (l = 1; l <= 16; l++) {
221     if (htbl->bits[l]) {
222       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
223        * minus the minimum code of length l
224        */
225       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
226       p += htbl->bits[l];
227       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
228     } else {
229       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
230     }
231   }
232   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
233
234   /* Compute lookahead tables to speed up decoding.
235    * First we set all the table entries to 0, indicating "too long";
236    * then we iterate through the Huffman codes that are short enough and
237    * fill in all the entries that correspond to bit sequences starting
238    * with that code.
239    */
240
241   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
242
243   p = 0;
244   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
245     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
246       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
247       /* Generate left-justified code followed by all possible bit sequences */
248       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
249       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
250         dtbl->look_nbits[lookbits] = l;
251         dtbl->look_sym[lookbits] = htbl->huffval[p];
252         lookbits++;
253       }
254     }
255   }
256
257   /* Validate symbols as being reasonable.
258    * For AC tables, we make no check, but accept all byte values 0..255.
259    * For DC tables, we require the symbols to be in range 0..15.
260    * (Tighter bounds could be applied depending on the data depth and mode,
261    * but this is sufficient to ensure safe decoding.)
262    */
263   if (isDC) {
264     for (i = 0; i < numsymbols; i++) {
265       int sym = htbl->huffval[i];
266       if (sym < 0 || sym > 15)
267         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
268     }
269   }
270 }
271
272
273 /*
274  * Out-of-line code for bit fetching (shared with jdphuff.c).
275  * See jdhuff.h for info about usage.
276  * Note: current values of get_buffer and bits_left are passed as parameters,
277  * but are returned in the corresponding fields of the state struct.
278  *
279  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
280  * of get_buffer to be used.  (On machines with wider words, an even larger
281  * buffer could be used.)  However, on some machines 32-bit shifts are
282  * quite slow and take time proportional to the number of places shifted.
283  * (This is true with most PC compilers, for instance.)  In this case it may
284  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
285  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
286  */
287
288 #ifdef SLOW_SHIFT_32
289 #define MIN_GET_BITS  15        /* minimum allowable value */
290 #else
291 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
292 #endif
293
294
295 GLOBAL(boolean)
296 jpeg_fill_bit_buffer (bitread_working_state * state,
297                       register bit_buf_type get_buffer, register int bits_left,
298                       int nbits)
299 /* Load up the bit buffer to a depth of at least nbits */
300 {
301   /* Copy heavily used state fields into locals (hopefully registers) */
302   register const JOCTET * next_input_byte = state->next_input_byte;
303   register size_t bytes_in_buffer = state->bytes_in_buffer;
304   j_decompress_ptr cinfo = state->cinfo;
305
306   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
307   /* (It is assumed that no request will be for more than that many bits.) */
308   /* We fail to do so only if we hit a marker or are forced to suspend. */
309
310   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
311     while (bits_left < MIN_GET_BITS) {
312       register int c;
313
314       /* Attempt to read a byte */
315       if (bytes_in_buffer == 0) {
316         if (! (*cinfo->src->fill_input_buffer) (cinfo))
317           return FALSE;
318         next_input_byte = cinfo->src->next_input_byte;
319         bytes_in_buffer = cinfo->src->bytes_in_buffer;
320       }
321       bytes_in_buffer--;
322       c = GETJOCTET(*next_input_byte++);
323
324       /* If it's 0xFF, check and discard stuffed zero byte */
325       if (c == 0xFF) {
326         /* Loop here to discard any padding FF's on terminating marker,
327          * so that we can save a valid unread_marker value.  NOTE: we will
328          * accept multiple FF's followed by a 0 as meaning a single FF data
329          * byte.  This data pattern is not valid according to the standard.
330          */
331         do {
332           if (bytes_in_buffer == 0) {
333             if (! (*cinfo->src->fill_input_buffer) (cinfo))
334               return FALSE;
335             next_input_byte = cinfo->src->next_input_byte;
336             bytes_in_buffer = cinfo->src->bytes_in_buffer;
337           }
338           bytes_in_buffer--;
339           c = GETJOCTET(*next_input_byte++);
340         } while (c == 0xFF);
341
342         if (c == 0) {
343           /* Found FF/00, which represents an FF data byte */
344           c = 0xFF;
345         } else {
346           /* Oops, it's actually a marker indicating end of compressed data.
347            * Save the marker code for later use.
348            * Fine point: it might appear that we should save the marker into
349            * bitread working state, not straight into permanent state.  But
350            * once we have hit a marker, we cannot need to suspend within the
351            * current MCU, because we will read no more bytes from the data
352            * source.  So it is OK to update permanent state right away.
353            */
354           cinfo->unread_marker = c;
355           /* See if we need to insert some fake zero bits. */
356           goto no_more_bytes;
357         }
358       }
359
360       /* OK, load c into get_buffer */
361       get_buffer = (get_buffer << 8) | c;
362       bits_left += 8;
363     } /* end while */
364   } else {
365   no_more_bytes:
366     /* We get here if we've read the marker that terminates the compressed
367      * data segment.  There should be enough bits in the buffer register
368      * to satisfy the request; if so, no problem.
369      */
370     if (nbits > bits_left) {
371       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
372        * the data stream, so that we can produce some kind of image.
373        * We use a nonvolatile flag to ensure that only one warning message
374        * appears per data segment.
375        */
376       if (! cinfo->entropy->insufficient_data) {
377         WARNMS(cinfo, JWRN_HIT_MARKER);
378         cinfo->entropy->insufficient_data = TRUE;
379       }
380       /* Fill the buffer with zero bits */
381       get_buffer <<= MIN_GET_BITS - bits_left;
382       bits_left = MIN_GET_BITS;
383     }
384   }
385
386   /* Unload the local registers */
387   state->next_input_byte = next_input_byte;
388   state->bytes_in_buffer = bytes_in_buffer;
389   state->get_buffer = get_buffer;
390   state->bits_left = bits_left;
391
392   return TRUE;
393 }
394
395
396 /*
397  * Out-of-line code for Huffman code decoding.
398  * See jdhuff.h for info about usage.
399  */
400
401 GLOBAL(int)
402 jpeg_huff_decode (bitread_working_state * state,
403                   register bit_buf_type get_buffer, register int bits_left,
404                   d_derived_tbl * htbl, int min_bits)
405 {
406   register int l = min_bits;
407   register INT32 code;
408
409   /* HUFF_DECODE has determined that the code is at least min_bits */
410   /* bits long, so fetch that many bits in one swoop. */
411
412   CHECK_BIT_BUFFER(*state, l, return -1);
413   code = GET_BITS(l);
414
415   /* Collect the rest of the Huffman code one bit at a time. */
416   /* This is per Figure F.16 in the JPEG spec. */
417
418   while (code > htbl->maxcode[l]) {
419     code <<= 1;
420     CHECK_BIT_BUFFER(*state, 1, return -1);
421     code |= GET_BITS(1);
422     l++;
423   }
424
425   /* Unload the local registers */
426   state->get_buffer = get_buffer;
427   state->bits_left = bits_left;
428
429   /* With garbage input we may reach the sentinel value l = 17. */
430
431   if (l > 16) {
432     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
433     return 0;                   /* fake a zero as the safest result */
434   }
435
436   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
437 }
438
439
440 /*
441  * Figure F.12: extend sign bit.
442  * On some machines, a shift and add will be faster than a table lookup.
443  */
444
445 #ifdef AVOID_TABLES
446
447 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
448
449 #else
450
451 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
452
453 static const int extend_test[16] =   /* entry n is 2**(n-1) */
454   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
455     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
456
457 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
458   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
459     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
460     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
461     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
462
463 #endif /* AVOID_TABLES */
464
465
466 /*
467  * Check for a restart marker & resynchronize decoder.
468  * Returns FALSE if must suspend.
469  */
470
471 LOCAL(boolean)
472 process_restart (j_decompress_ptr cinfo)
473 {
474   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
475   int ci;
476
477   /* Throw away any unused bits remaining in bit buffer; */
478   /* include any full bytes in next_marker's count of discarded bytes */
479   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
480   entropy->bitstate.bits_left = 0;
481
482   /* Advance past the RSTn marker */
483   if (! (*cinfo->marker->read_restart_marker) (cinfo))
484     return FALSE;
485
486   /* Re-initialize DC predictions to 0 */
487   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
488     entropy->saved.last_dc_val[ci] = 0;
489
490   /* Reset restart counter */
491   entropy->restarts_to_go = cinfo->restart_interval;
492
493   /* Reset out-of-data flag, unless read_restart_marker left us smack up
494    * against a marker.  In that case we will end up treating the next data
495    * segment as empty, and we can avoid producing bogus output pixels by
496    * leaving the flag set.
497    */
498   if (cinfo->unread_marker == 0)
499     entropy->pub.insufficient_data = FALSE;
500
501   return TRUE;
502 }
503
504
505 /*
506  * Decode and return one MCU's worth of Huffman-compressed coefficients.
507  * The coefficients are reordered from zigzag order into natural array order,
508  * but are not dequantized.
509  *
510  * The i'th block of the MCU is stored into the block pointed to by
511  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
512  * (Wholesale zeroing is usually a little faster than retail...)
513  *
514  * Returns FALSE if data source requested suspension.  In that case no
515  * changes have been made to permanent state.  (Exception: some output
516  * coefficients may already have been assigned.  This is harmless for
517  * this module, since we'll just re-assign them on the next call.)
518  */
519
520 METHODDEF(boolean)
521 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
522 {
523   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
524   int blkn;
525   BITREAD_STATE_VARS;
526   savable_state state;
527
528   /* Process restart marker if needed; may have to suspend */
529   if (cinfo->restart_interval) {
530     if (entropy->restarts_to_go == 0)
531       if (! process_restart(cinfo))
532         return FALSE;
533   }
534
535   /* If we've run out of data, just leave the MCU set to zeroes.
536    * This way, we return uniform gray for the remainder of the segment.
537    */
538   if (! entropy->pub.insufficient_data) {
539
540     /* Load up working state */
541     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
542     ASSIGN_STATE(state, entropy->saved);
543
544     /* Outer loop handles each block in the MCU */
545
546     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
547       JBLOCKROW block = MCU_data[blkn];
548       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
549       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
550       register int s, k, r;
551
552       /* Decode a single block's worth of coefficients */
553
554       /* Section F.2.2.1: decode the DC coefficient difference */
555       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
556       if (s) {
557         CHECK_BIT_BUFFER(br_state, s, return FALSE);
558         r = GET_BITS(s);
559         s = HUFF_EXTEND(r, s);
560       }
561
562       if (entropy->dc_needed[blkn]) {
563         /* Convert DC difference to actual value, update last_dc_val */
564         int ci = cinfo->MCU_membership[blkn];
565         s += state.last_dc_val[ci];
566         state.last_dc_val[ci] = s;
567         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
568         (*block)[0] = (JCOEF) s;
569       }
570
571       if (entropy->ac_needed[blkn]) {
572
573         /* Section F.2.2.2: decode the AC coefficients */
574         /* Since zeroes are skipped, output area must be cleared beforehand */
575         for (k = 1; k < DCTSIZE2; k++) {
576           HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
577       
578           r = s >> 4;
579           s &= 15;
580       
581           if (s) {
582             k += r;
583             CHECK_BIT_BUFFER(br_state, s, return FALSE);
584             r = GET_BITS(s);
585             s = HUFF_EXTEND(r, s);
586             /* Output coefficient in natural (dezigzagged) order.
587              * Note: the extra entries in jpeg_natural_order[] will save us
588              * if k >= DCTSIZE2, which could happen if the data is corrupted.
589              */
590             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
591           } else {
592             if (r != 15)
593               break;
594             k += 15;
595           }
596         }
597
598       } else {
599
600         /* Section F.2.2.2: decode the AC coefficients */
601         /* In this path we just discard the values */
602         for (k = 1; k < DCTSIZE2; k++) {
603           HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
604       
605           r = s >> 4;
606           s &= 15;
607       
608           if (s) {
609             k += r;
610             CHECK_BIT_BUFFER(br_state, s, return FALSE);
611             DROP_BITS(s);
612           } else {
613             if (r != 15)
614               break;
615             k += 15;
616           }
617         }
618
619       }
620     }
621
622     /* Completed MCU, so update state */
623     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
624     ASSIGN_STATE(entropy->saved, state);
625   }
626
627   /* Account for restart interval (no-op if not using restarts) */
628   entropy->restarts_to_go--;
629
630   return TRUE;
631 }
632
633
634 /*
635  * Module initialization routine for Huffman entropy decoding.
636  */
637
638 GLOBAL(void)
639 jinit_huff_decoder (j_decompress_ptr cinfo)
640 {
641   huff_entropy_ptr entropy;
642   int i;
643
644   entropy = (huff_entropy_ptr)
645     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
646                                 SIZEOF(huff_entropy_decoder));
647   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
648   entropy->pub.start_pass = start_pass_huff_decoder;
649   entropy->pub.decode_mcu = decode_mcu;
650
651   /* Mark tables unallocated */
652   for (i = 0; i < NUM_HUFF_TBLS; i++) {
653     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
654   }
655 }
656
657 #endif //_FX_JPEG_TURBO_