XFA: merge patch from CL 815103002
[pdfium.git] / third_party / freetype / src / base / md5.c
1 /*
2  * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
3  * MD5 Message-Digest Algorithm (RFC 1321).
4  *
5  * Homepage:
6  * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7  *
8  * Author:
9  * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10  *
11  * This software was written by Alexander Peslyak in 2001.  No copyright is
12  * claimed, and the software is hereby placed in the public domain.
13  * In case this attempt to disclaim copyright and place the software in the
14  * public domain is deemed null and void, then the software is
15  * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16  * general public under the following terms:
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted.
20  *
21  * There's ABSOLUTELY NO WARRANTY, express or implied.
22  *
23  * (This is a heavily cut-down "BSD license".)
24  *
25  * This differs from Colin Plumb's older public domain implementation in that
26  * no exactly 32-bit integer data type is required (any 32-bit or wider
27  * unsigned integer data type will do), there's no compile-time endianness
28  * configuration, and the function prototypes match OpenSSL's.  No code from
29  * Colin Plumb's implementation has been reused; this comment merely compares
30  * the properties of the two independent implementations.
31  *
32  * The primary goals of this implementation are portability and ease of use.
33  * It is meant to be fast, but not as fast as possible.  Some known
34  * optimizations are not included to reduce source code size and avoid
35  * compile-time configuration.
36  */
37
38 #ifndef HAVE_OPENSSL
39
40 #include <string.h>
41
42 #include "md5.h"
43
44 /*
45  * The basic MD5 functions.
46  *
47  * F and G are optimized compared to their RFC 1321 definitions for
48  * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
49  * implementation.
50  */
51 #define F(x, y, z)                      ((z) ^ ((x) & ((y) ^ (z))))
52 #define G(x, y, z)                      ((y) ^ ((z) & ((x) ^ (y))))
53 #define H(x, y, z)                      (((x) ^ (y)) ^ (z))
54 #define H2(x, y, z)                     ((x) ^ ((y) ^ (z)))
55 #define I(x, y, z)                      ((y) ^ ((x) | ~(z)))
56
57 /*
58  * The MD5 transformation for all four rounds.
59  */
60 #define STEP(f, a, b, c, d, x, t, s) \
61         (a) += f((b), (c), (d)) + (x) + (t); \
62         (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
63         (a) += (b);
64
65 /*
66  * SET reads 4 input bytes in little-endian byte order and stores them
67  * in a properly aligned word in host byte order.
68  *
69  * The check for little-endian architectures that tolerate unaligned
70  * memory accesses is just an optimization.  Nothing will break if it
71  * doesn't work.
72  */
73 #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)
74 #define SET(n) \
75         (*(MD5_u32plus *)&ptr[(n) * 4])
76 #define GET(n) \
77         SET(n)
78 #else
79 #define SET(n) \
80         (ctx->block[(n)] = \
81         (MD5_u32plus)ptr[(n) * 4] | \
82         ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \
83         ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \
84         ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))
85 #define GET(n) \
86         (ctx->block[(n)])
87 #endif
88
89 /*
90  * This processes one or more 64-byte data blocks, but does NOT update
91  * the bit counters.  There are no alignment requirements.
92  */
93 static const void *body(MD5_CTX *ctx, const void *data, unsigned long size)
94 {
95         const unsigned char *ptr;
96         MD5_u32plus a, b, c, d;
97         MD5_u32plus saved_a, saved_b, saved_c, saved_d;
98
99         ptr = (const unsigned char *)data;
100
101         a = ctx->a;
102         b = ctx->b;
103         c = ctx->c;
104         d = ctx->d;
105
106         do {
107                 saved_a = a;
108                 saved_b = b;
109                 saved_c = c;
110                 saved_d = d;
111
112 /* Round 1 */
113                 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
114                 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
115                 STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
116                 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
117                 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
118                 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
119                 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
120                 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
121                 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
122                 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
123                 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
124                 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
125                 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
126                 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
127                 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
128                 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
129
130 /* Round 2 */
131                 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
132                 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
133                 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
134                 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
135                 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
136                 STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
137                 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
138                 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
139                 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
140                 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
141                 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
142                 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
143                 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
144                 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
145                 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
146                 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
147
148 /* Round 3 */
149                 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
150                 STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11)
151                 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
152                 STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23)
153                 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
154                 STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11)
155                 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
156                 STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23)
157                 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
158                 STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11)
159                 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
160                 STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23)
161                 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
162                 STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11)
163                 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
164                 STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23)
165
166 /* Round 4 */
167                 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
168                 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
169                 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
170                 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
171                 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
172                 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
173                 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
174                 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
175                 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
176                 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
177                 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
178                 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
179                 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
180                 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
181                 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
182                 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
183
184                 a += saved_a;
185                 b += saved_b;
186                 c += saved_c;
187                 d += saved_d;
188
189                 ptr += 64;
190         } while (size -= 64);
191
192         ctx->a = a;
193         ctx->b = b;
194         ctx->c = c;
195         ctx->d = d;
196
197         return ptr;
198 }
199
200 void MD5_Init(MD5_CTX *ctx)
201 {
202         ctx->a = 0x67452301;
203         ctx->b = 0xefcdab89;
204         ctx->c = 0x98badcfe;
205         ctx->d = 0x10325476;
206
207         ctx->lo = 0;
208         ctx->hi = 0;
209 }
210
211 void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)
212 {
213         MD5_u32plus saved_lo;
214         unsigned long used, available;
215
216         saved_lo = ctx->lo;
217         if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
218                 ctx->hi++;
219         ctx->hi += size >> 29;
220
221         used = saved_lo & 0x3f;
222
223         if (used) {
224                 available = 64 - used;
225
226                 if (size < available) {
227                         memcpy(&ctx->buffer[used], data, size);
228                         return;
229                 }
230
231                 memcpy(&ctx->buffer[used], data, available);
232                 data = (const unsigned char *)data + available;
233                 size -= available;
234                 body(ctx, ctx->buffer, 64);
235         }
236
237         if (size >= 64) {
238                 data = body(ctx, data, size & ~(unsigned long)0x3f);
239                 size &= 0x3f;
240         }
241
242         memcpy(ctx->buffer, data, size);
243 }
244
245 void MD5_Final(unsigned char *result, MD5_CTX *ctx)
246 {
247         unsigned long used, available;
248
249         used = ctx->lo & 0x3f;
250
251         ctx->buffer[used++] = 0x80;
252
253         available = 64 - used;
254
255         if (available < 8) {
256                 memset(&ctx->buffer[used], 0, available);
257                 body(ctx, ctx->buffer, 64);
258                 used = 0;
259                 available = 64;
260         }
261
262         memset(&ctx->buffer[used], 0, available - 8);
263
264         ctx->lo <<= 3;
265         ctx->buffer[56] = ctx->lo;
266         ctx->buffer[57] = ctx->lo >> 8;
267         ctx->buffer[58] = ctx->lo >> 16;
268         ctx->buffer[59] = ctx->lo >> 24;
269         ctx->buffer[60] = ctx->hi;
270         ctx->buffer[61] = ctx->hi >> 8;
271         ctx->buffer[62] = ctx->hi >> 16;
272         ctx->buffer[63] = ctx->hi >> 24;
273
274         body(ctx, ctx->buffer, 64);
275
276         result[0] = ctx->a;
277         result[1] = ctx->a >> 8;
278         result[2] = ctx->a >> 16;
279         result[3] = ctx->a >> 24;
280         result[4] = ctx->b;
281         result[5] = ctx->b >> 8;
282         result[6] = ctx->b >> 16;
283         result[7] = ctx->b >> 24;
284         result[8] = ctx->c;
285         result[9] = ctx->c >> 8;
286         result[10] = ctx->c >> 16;
287         result[11] = ctx->c >> 24;
288         result[12] = ctx->d;
289         result[13] = ctx->d >> 8;
290         result[14] = ctx->d >> 16;
291         result[15] = ctx->d >> 24;
292
293         memset(ctx, 0, sizeof(*ctx));
294 }
295
296 #endif